Clevertronics: The most advanced emergency lighting system

.

.

Introducing Dynamic Self-Managed (DSM) meshing technology

The most recent technological advancement for emergency lighting systems is Dynamic Self-Managed (DSM) meshing. Mesh networks have been used in a number of different applications since the late 90s, but it’s only in the last few years that we’ve seen this technology used in emergency lighting.

So, how does it work? Let’s break it down…

Wireless connection

The infrastructure nodes (in this case, the emergency light fittings) connect directly and wirelessly with surrounding nodes using the RF system.

Self-organising and self-configuring

The devices cooperate together dynamically to create the network and find the most efficient route to send data back to the controller. It means the nodes aren’t dependent on any one path or failure point (like the wired system) and because they’re self-organising, they configure themselves once they’re installed. Plus, self-configuring means the system is much quicker to get up and running.

Mesh network

The combination of RF and meshing minimises the backbone and hardware devices required to transmit data. With DSM meshing, each controller is connected to a “mesh” of up to 1000 emergency light fittings. Other RF systems (without DSM meshing technology) typically only manage a maximum of 250 devices per controller, which makes installation more complex and expensive.

Self-managing

Self-managing allows the system to maximise the efficiency and usage of limited resources. You might have a network of 1,000 fittings with 40 channels, across which they can choose to communicate. In earlier generation systems, they might use all those channels up very quickly, which then limits the amount of data they can transmit, slowing down the entire system.
But when your system is self-managing, the devices manage their frequency and only use enough power to transmit data to its closest neighbours. Other devices elsewhere on the network can reuse the same channel, which means you can increase the bandwidth exponentially.

Dynamic

The system automatically runs diagnostics to find the best possible pathways back to the controller, and will use different paths depending on the conditions. For example, if you lose a fitting because someone accidentally smashed it while moving furniture between rooms or throwing a ball inside (it happens), the network will find another way back to the controller, since each device is able to talk to at least two other fittings in multiple directions (depending on how your emergency luminaires are spaced). The network has built-in redundancy.

Synchronising

You could have hundreds of devices talking at the same time and automatically synchronising their communication so that a huge amount of information can be sent back to the controller almost instantly. This makes testing, monitoring, and maintenance extremely efficient.

Tip: The best way to understand this is to imagine a restaurant where everyone talks loudly at the same time – it’d be chaotic and you’d probably struggle to make out a single word! But if each person uses enough volume to communicate with the people at their table, people can successfully have conversations and understand each other. DSM meshing technology works in pretty much the same way. The devices choose what frequencies they broadcast on and how strong they broadcast their signal so that they can efficiently communicate data without talking over each other.

So, how do you get DSM meshing? In 2020, Clevertronics brought this technology to the UK emergency lighting market for the first time through the XT HIVE system.

XT HIVE is the most advanced emergency lighting system on the market

XT Hive is the latest upgrade for Zoneworks. It uses the RF backbone, combined with the unique DSM meshing system to minimise hardware and efficiently transmit data and control the system. It’s the most advanced emergency lighting system on the market. With a simplified backbone, it’s so much easier to install, use, and maintain emergency lights on a whole range of facilities – especially large, distributed, or complex sites.

Every device contains one of our XT HIVE nodes, which then forms part of a Dynamic Self-Managed (DSM) meshing network. Our technology formulates the mesh network once the devices are powered. They look for each other and form colonies, then all try to find their pathway back to the controller via the most efficient route, so that information can flow from the controller and back into the network.

Why we chose HIVE

We spent years evaluating other RF technologies before we found one that would ultimately deliver a superior outcome to the powerline technology we were using. It’s not that the existing systems were bad – a lot of them worked great and were very reliable. But we wanted a solution that would reduce the amount of hardware and infrastructure needed to distribute data within the system.

Most other RF-based emergency lighting systems are set up so that the controller manages its own mesh network. But we found that with one controller managing the network, rather than hundreds of nodes self-managing, it limited bandwidth and slowed the system down. We were looking for a solution that was quick and dynamic, and would provide massive value to our customers.

Some other technologies we looked at included ZigBee Pro Bluetooth, LoRa, and Sigfox. We found these options were best for wide area networks because they had a lower data rate, used more power, and operated at lower frequencies. They’re ideal for Smart City applications – things like street pole management, toilet block checking, and bin level checks. But they’re not so great inside a building where there’s a high density of fittings and you potentially need to transmit across 30 storeys. This technology can’t deliver a solution where your controller can talk to every fitting in the building simultaneously – which is crucial for speed and efficiency.

In the end, XT HIVE was the only logical choice. Although it does a lot of the same things as our earlier systems (including automatic monitoring and testing), there are key differences and advantages:

  • Performance – Compared to others on the market, the system is much faster to test, monitor, and maintain (because the 2.4GHz network we use is so fast, we actually have to throttle it!)
  • Minimal hardware – Fewer controllers (typically a big ticket item) and a totally wireless system means lower upfront costs and faster installs
  • Speed to install – XT HIVE is a simpler system, which means it’s faster to design and much faster to install and commission
  • Lower costs – Less hardware and better efficiency means lower costs, both upfront and ongoing
  • Improved reliability – Because there are thousands of paths back to the controller, there’s no single point of failure in the network
  • Easier to set up – Because it’s self-managing, the system configures itself in just a few minutes
  • Lightweight – On most sites (with up to 1000 devices), all you need to manage the system is a single controller and a computer

Overall, the system delivers improved outcomes for our customers across all areas, including design, installation, testing, maintenance, efficiency, price, and performance. At the moment, there’s nothing else on the market that compares.

What’s possible with HIVE??

As you can imagine, HIVE makes emergency lighting systems easier to install and manage for a whole range of applications. But it especially stands out for a few scenarios where simplicity, speed, flexibility, and connectedness is key.

Incremental upgrades

Because the technology is self-managing, you can easily upgrade your system in phases. The installer can place the controller in and install emergency lights section by section, or area by area. As long as the devices can establish a pathway back to the controller, the network will continue to build itself as each new phase is installed. This is ideal for facilities where you can’t afford to upgrade your entire emergency lighting system all at once, or where you’re upgrading a facility in stages.

Campus solutions

If you have multiple campuses (e.g. schools, universities, hospitals, nursing homes), the RF technology makes it easier than ever to link them together. With HIVE, you can connect your campuses together and control, test, and oversee all your emergency lighting devices in a single place.

Heritage listed buildings

Upgrades can be tricky in existing buildings, but especially older, heritage-listed ones. That’s because you may not have the full picture on existing wiring and getting permission to alter the building is often a complex process. HIVE is ideal for these buildings because it requires almost no intervention or wiring.

24/7 facilities

Some buildings and workplaces never shut down – like hospitals, shopping centres, and apartments. Upgrading electrical components in these buildings can be complex if you need to shut down the entire electrical switchboard. No matter how carefully you try to schedule the shutdown, you’ll still disrupt a lot of people. Fortunately, because HIVE allows you to do a staged upgrade, you never have to turn off the whole electrical switchboard to do the installation. You only need to turn off the local circuit of lights, which means you’ll only impact a small number of occupants at a time, and only for a short period as you change over the emergency light.

.

.

About Clevertronics

We Embrace Innovation
Clevertronics were global pioneers in 2012 when they launched
the L10 Nanophosphate range of products incorporating Lithium
Nanophosphate® battery technology. The L10 range revolutionised
the emergency lighting market and delivered a massive 85%*
reduction in maintenance costs to facility owners. These on-site
results are unmatched by any other product on the market.

Visit Website
View All Posts

The Light Review Newsletter

* indicates required

Please confirm you'd like to hear from The Light Review by email:

You can unsubscribe at any time by clicking the link in the footer of our emails. For information about our privacy practices, please visit our website.

Latest Articles

Scroll to Top